






sqlite数据库需要的内容
访问https://github.com/modelcontextprotocol/servers下载代码。
代码解压缩放到本地目录
Sqlite的MCP Server配置如下地方进行替换
\servers-main\src\sqlite
接着安装uv,运行如下命令:
pip install uvpip install httpx mcp
注意在所有的准备工作做完后,进入到MCP服务器配置。重点是参数这个地方容易填错,具体参数如下:
--directory你自己的目录地址sqliterunmcp-server-sqlite--db-path你自己的目录地址scm.db
具体界面截图如下:

在这里要注意,点击确定的时候系统会自动进行检查。如果有异常最方便的检查方式就是先在命令行按截图中的参数运行 uv 命令。如果命令行运行没有问题,那么这个地方配置基本上没有问题。
配置好后还是做下简单测试如下:


在测试和验证过程中7B模型正常输出,我反而是在测试QWQ-32B的深度思考模式的时候,发现对于简单问题复杂化,并且循环思考的问题。而且深度思考时间也很长。
至少从简单的测试验证来看,还是上篇文章采用Claude 3.7大模型的时候配合Sqlite MCP Server往往对于自然语言查询的语义理解最准确。
对于自己编写python存放到本地目录并运行,还需要安装一个能够执行本地脚本或python文件的MCP Server,具体地址:
https://github.com/g0t4/mcp-server-commands
关键配置信息如下:
"mcp-server-commands": { "command": "npx", "args": ["mcp-server-commands"] },
由于Cherry Studio本身还可以接本地部署的大模型,因此如果企业开展MCP适配和接入方面的测试和验证,选择Cherry Studio是一个不错的选择。基于上一篇文章同样的思路,我们完全可以把企业已有的API能力作为MCP Server开放接入,把类似数据中台经过清洗后端的共享数据库作为MCP Server源接入。
当然实际查询的准确度如何还需要进一步验证。今天的简单分享就到这里,希望对大家有所启发。